Duality and optimality conditions in stochastic optimization and mathematical finance

نویسندگان

  • Sara Biagini
  • Teemu Pennanen
  • Ari-Pekka Perkkiö
چکیده

This article studies convex duality in stochastic optimization over finite discrete-time. The first part of the paper gives general conditions that yield explicit expressions for the dual objective in many applications in operations research and mathematical finance. The second part derives optimality conditions by combining general saddle-point conditions from convex duality with the dual representations obtained in the first part of the paper. Several applications to stochastic optimization and mathematical finance are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones‎

In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...

متن کامل

Duality for vector equilibrium problems with constraints

‎In the paper‎, ‎we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior‎. ‎Then‎, ‎their applications to optimality conditions for quasi-relative efficient solutions are obtained‎. ‎Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...

متن کامل

Stochastic programs without duality gaps

This paper studies dynamic stochastic optimization problems parametrized by a random variable. Such problems arise in many applications in operations research and mathematical finance. We give sufficient conditions for the existence of solutions and the absence of a duality gap. Our proof uses extended dynamic programming equations, whose validity is established under new relaxed conditions tha...

متن کامل

Stochastic programs without duality gaps for objectives without a lower bound

This paper studies parameterized stochastic optimization problems in finite discrete time that arise in many applications in operations research and mathematical finance. We prove the existence of solutions and the absence of a duality gap under conditions that relax the boundedness assumption made by Pennanen and Perkkiö in [Stochastic programs without duality gaps, Math. Program., 136(1):91–1...

متن کامل

Convex Duality in Stochastic Optimization and Mathematical Finance

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015